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▹    	

Galaxy  Clusters	
▹ Galaxy  cluster  
composition:	
▸  Dark  ma_er  (~85%)  	
▸  Baryonic  ma_er:	

~10%  galaxies	
~90%  ICM  gas	
	

▹ Galaxy  clusters  can  be  
used  as  probes  of  
cosmology	
▸  Evolution  of  the  cluster  
mass  function  N(M,  z)	

	

	
	

Optical: N. Benitez, T. Broadhurst, 
H. Ford, M. Clampin, G. Hartig, 
G. Illingworth, ACS Science 
Team, ESA   

X-ray: NASA/CXC/MIT/E.-H 
Peng 
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▹    	

Parameterizing  Galaxy  Clusters  	
▹  Sizes  of  galaxy  clusters  defined  with  respect  to  
background  densities  ρb(z)	
▸  Masses  MΔ,  radii  RΔ:	

	<ρ>(<RΔ)  =  Δxρb(z)	
	MΔ  =  M(<RΔ)	

▸  Δ  =  500,  200  commonly  used	
▸  ρb  =  ρc  -‐‑>  R200c,  ρb  =  ρm  -‐‑>  R200m	

▸  R200m≈(1.2-‐‑1.7)xR200c	

▸  Rvir≈(1-‐‑1.3)xR200c	
	

▹  Some  typical  cluster  values:	
▸  M200c  ~  (2-‐‑20)x1014  M¤ 

▸  R200c  ~  1-‐‑2  Mpc	
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▹    	

Galaxy  Cluster  Outskirts	
▹  Density  jumps  in  cluster  outskirts  
predicted  by  models  of  structure  
formation  (e.g.,  Bertschinger  1985)  and  
recent  simulations  (e.g.,  Diemer  &  
Kravtsov  2014)	

▸  Gas  density  jump:  virial  shock  	
▸  Dark  ma_er  density  jump	
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Above:  Bertschinger  1985	
Right:  A  variant  on  the  model  proposed  by  Diemer  &  Kravtsov  (2014)	



▹    	

X-‐‑ray  Observations  of  Cluster  Gas  	
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Above:  Vikhlinin  et  al.  (2006)	
Right:  Data  from  Vikhlinin  et  al.    (2006,  2009)	



▹    	

Cluster  Gas  Modeling	
▹  Simple:  	
▸  Standard  β-‐‑Model  (Cavaliere  &  Fusco-‐‑Femiano  1976)	

▸  Assumptions:  hydrostatic  equilibrium,  isothermal  cluster  gas	
	
	
	

▸  Alternatives:  NFW,  SIS,  most  other  well-‐‑known  profiles	
▹  Complex:	
▸  Double  Beta  Model:	
	
	
	

▸  Vikhlinin  Model:	
	
	
	

▹  Can  we  find  a  simple  alternative  with  fewer  parameters  that  is  in  
line  with  the  latest  X-‐‑ray  observations?	
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▹    	

Deriving  the  Models	
▹ Begin  with  three  assumptions:	
▸  Spherical  symmetry	
▸  Virial  shock  &  DM  density  jump  at  a  radius  s  ~  virial  radius,  
modeled  as  sharp  cut-‐‑offs  	

▸  Ansar:	
	

▹ Apply  three  simple  conditions:	
▸  Mg(<s)  =  fgMDM(<s)  (inner  profile)	
▸  ρg(r>s)  =  fgρDM(r>s)  (outer  profile)	
▸  Γg=ρg(s+)/ρg(s-‐‑)  ,  ΓDM= ρDM(s+)/ρDM(s-‐‑);  Γ=Γg/ΓDM    (shock,  density  
jump)	
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▹    	

New  Models  for  the  Gas  Density	
▹ Assume  NFW  for  DM  inner  
profile:	

	
	
▹ Resulting  inner  gas  profile  
(Γ=Γg/ΓDM):	
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▹    	

Comparison  with  β-‐‑Model	
▹ Relaxed  Clusters:	

		

	

11	

6

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

-110

A478

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

A1650

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-610

-510

-410

-310

-210

A1651

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-710

-610

-510

-410

-310

-210

A2063

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

-110

A2390

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

A2589

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

A3158

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

A3391

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

 ]
-3

  
[ 

c
m

n

-510

-410

-310

-210

A3571

 [kpc]R
10 210 310

δ

-0.4

-0.2

0

0.2

0.4

Fig. 3.— Examples of fits to a subsample of gas density profiles of relaxed clusters for which our model (green) provides a reasonable
description over the range of radii considered; the �-model (blue) is shown for comparison. The lower panel shows the normalized residual,
� (see text).



▹    	

Comparison  with  β-‐‑Model	
▹ Merging  Clusters:	
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Fig. 4.— Same as Figure 3, but for systems identified as mergers by V09.

Fig. 5.— Histograms of the maximum normalized residual |�| from fitting our model (green) and the �-model (blue) to all clusters. The
lefthand panel considers the values of |�| over the entire radial range of each cluster (20 kpc < r < r500), while the righthand panels show the
distributions using truncated ranges: the central region (top), 20 kpc < r < 400 kpc, and the outer region (bottom), 400 kpc < r < r500.
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▹    	

Comparison  with  X-‐‑ray  Observations	
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▹    	

Prospects	
▹ We  used  simple  assumptions  to  guide  the  derivation  
of  new  families  of  gas  profiles;  the  fiducial  profile  is  
consistent  with  X-‐‑ray  observations  of  cluster  interiors  
and  is  simpler  than  competing  models	

	

▹ Later  simulations  of  Lau  et  al.  (2015)  agree  with  our  
model’s  predictions  for  how  gas  traces  DM  in  cluster  
outskirts	

	

▹ Can  extend  models  with  additional  physics  of  galaxy  
clusters	

	

▹ Future  observational  efforts  can  constrain  density  
jumps  via  weak  lensing  and  deep  X-‐‑ray  data  	
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▹    	

Density  Jumps  in  Galaxy  Profiles	
	

▹ Detecting  the  dark  ma_er  density  jump  in  data  would  
provide  a  test  of  the  nature  of  dark  ma_er	

	

▹  Since  the  cluster  member  galaxies  are  expected  to  follow  
similar  collisionless  dynamics  as  the  dark  ma_er,  the  
density  jump  should  be  present  in  the  galaxy  distribution  
as  well	

	

▹ Need  methods  to  probe  galaxy  density  jump  
observationally	
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▹    	

Data	

16	

▹  Sample  of  56  clusters  (~16  groups)  at  0.1  <  z  <  0.3  from  
Rines  et  al.  (2013)	

▹  Select  cluster  members  via  SDSS  photometry  and  R13  
spectroscopy	
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▹    	

Models	
▹  Density  Jump  model  (variant  on  model  of  Diemer  &  Kravtsov  2014):	

	

	
▹  Alternative  model:	

	
▹  Project  both  models  along  line-‐‑of-‐‑sight:	
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▹    	

Information  Criteria	
▹ Aikake  Information  Criterion  (Aikake  1974)  and  Bayesian  
Information  Criterion  (Schwarr  1978)  provide  a  means  of  
comparing  the  fits	

▹ Compute  differences  ΔIC:	
▸  ΔIC  =  1-‐‑5  indicate  positive  evidence  in  favor  of  the  model  with  the  
lower  IC  value	

▸  ΔIC  >  5  indicate  strong  evidence  in  favor  of  the  model  with  the  
lower  IC  value	
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Fig. 2.— Top: The cluster member selection for example cluster
A1068 using Selection A, which comprises galaxies selected using
the red sequence method and galaxies with SDSS photometric red-
shifts, which add in some galaxies blueward of the red sequence.
Bottom: The cluster member selection for this same cluster using
Selection B, which combines the red sequence, photometric red-
shifts, and spectroscopic redshifts.

statistics for each fit:

AIC = �2 + 2p+
2p(p+ 1)

N � p� 1
, (5)

BIC = �2 + p ln(N ), (6)

where p is the number of parameters in the fit, N is
the number of data points being fitted, and �2 is the
standard minimized goodness-of-fit parameter. In the
case of the AIC, we have also included a correction term
of 2p(p+1)/(N �p�1) which is recommended for small
values of N (Burnham & Anderson 2002, 2004). The
model that is preferred by these criteria is the one with

the lower IC = AIC, BIC value. If we compute �IC =
IChigh � IClow, then, roughly, values of �IC = 1� 5 are
indicative of ‘positive’ evidence in favor of the model with
lower IC and values of �IC > 5 denote ‘strong’ evidence
(e.g., Liddle 2007; Broderick et al. 2011).
Our second method consists of smoothing the profiles

by fitting a smoothing cubic spline to our data. For a
data set with measured values yi and errors �i at a set
of points ri, the smoothing spline f(ri) is constructed to
satisfy the condition

NX

i=1

✓
yi � f(ri)

�i

◆2

 S, (7)

where S is a constant that interpolates between smooth-
ing and fitting: that is, when S = 0, the spline is forced
to pass through every data point, so that there is no
smoothing, whereas as S is increased, the curve becomes
smoother at the expense of the fit (de Boor 2001). Rein-
sch (1967) argues that the smoothing parameter S should
be chosen in the range N �

p
2N  S  N +

p
2N ,

where N is the number of data points over which we
construct the spline, if the �i are estimates of the stan-
dard deviation in yi. We accordingly choose three val-
ues within this range to compare to an NFW fit: S =
N �

p
2N , N , N +

p
2N . The NFW model is expected

to be a good fit to the inner parts of the profile, so we use
the analytical expression for the projected NFW density
(e.g., Wright & Brainerd 2000) to fit the cluster galaxy
density profiles within R200, establishing the values of
ns and rs. We then calculate the logarithmic derivative
d log(N)/d log(R) of the splines for each cluster to test
for the presence of the density jump feature, comparing
it to the logarithmic derivative of the NFW fit.

3.2. Fixed Parameters

As noted in Section 1, we define measures of clus-
ter size such that the mean mass density inside the ra-
dius R� is ⇢̄ = �⇢b(z); commonly used values are R500

and R200. The other quantity that needs to be spec-
ified is the background density ⇢b(z); one choice often
used in observational work is the critical density ⇢c(z) ⌘
3H(z)2/8⇡G, where H(z) is the Hubble constant at red-
shift z, which is given byH(z)2 = H2

0

⇥
⌦m(1 + z)3 + ⌦⇤

⇤

with H0 = 100 h km/s/Mpc. Another choice is to use
the mean matter density ⇢m(z) = ⇢c(z)⌦m(z), where
⌦m(z) = ⌦m(1 + z)3/

⇥
⌦m(1 + z)3 + ⌦⇤

⇤
, which is used

with � = 200.
As noted above, DK14 use the mean matter density

⇢m(z) to define the radius R200 = R200m used in the
fitting formula given by Equation (1). However, R13
measures R200 = R200c for their sample of clusters using
the critical density as reference, so we need to convert
their measure to that of DK14. To do so, we note that a
given mean density ⇢̄ may be written in two ways:

⇢̄ = �c⇢c(z) = �m⇢m(z). (8)

If we specify that ⇢ = ⇢NFW, then in the outskirts of the
cluster (i.e., including near R200), we have:

⇢̄(R�) /
1

R3
�

. (9)
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statistics for each fit:

AIC = �2 + 2p+
2p(p+ 1)

N � p� 1
, (5)

BIC = �2 + p ln(N ), (6)

where p is the number of parameters in the fit, N is
the number of data points being fitted, and �2 is the
standard minimized goodness-of-fit parameter. In the
case of the AIC, we have also included a correction term
of 2p(p+1)/(N �p�1) which is recommended for small
values of N (Burnham & Anderson 2002, 2004). The
model that is preferred by these criteria is the one with

the lower IC = AIC, BIC value. If we compute �IC =
IChigh � IClow, then, roughly, values of �IC = 1� 5 are
indicative of ‘positive’ evidence in favor of the model with
lower IC and values of �IC > 5 denote ‘strong’ evidence
(e.g., Liddle 2007; Broderick et al. 2011).
Our second method consists of smoothing the profiles

by fitting a smoothing cubic spline to our data. For a
data set with measured values yi and errors �i at a set
of points ri, the smoothing spline f(ri) is constructed to
satisfy the condition

NX

i=1

✓
yi � f(ri)

�i

◆2

 S, (7)

where S is a constant that interpolates between smooth-
ing and fitting: that is, when S = 0, the spline is forced
to pass through every data point, so that there is no
smoothing, whereas as S is increased, the curve becomes
smoother at the expense of the fit (de Boor 2001). Rein-
sch (1967) argues that the smoothing parameter S should
be chosen in the range N �

p
2N  S  N +

p
2N ,

where N is the number of data points over which we
construct the spline, if the �i are estimates of the stan-
dard deviation in yi. We accordingly choose three val-
ues within this range to compare to an NFW fit: S =
N �

p
2N , N , N +

p
2N . The NFW model is expected

to be a good fit to the inner parts of the profile, so we use
the analytical expression for the projected NFW density
(e.g., Wright & Brainerd 2000) to fit the cluster galaxy
density profiles within R200, establishing the values of
ns and rs. We then calculate the logarithmic derivative
d log(N)/d log(R) of the splines for each cluster to test
for the presence of the density jump feature, comparing
it to the logarithmic derivative of the NFW fit.

3.2. Fixed Parameters

As noted in Section 1, we define measures of clus-
ter size such that the mean mass density inside the ra-
dius R� is ⇢̄ = �⇢b(z); commonly used values are R500

and R200. The other quantity that needs to be spec-
ified is the background density ⇢b(z); one choice often
used in observational work is the critical density ⇢c(z) ⌘
3H(z)2/8⇡G, where H(z) is the Hubble constant at red-
shift z, which is given byH(z)2 = H2

0

⇥
⌦m(1 + z)3 + ⌦⇤

⇤

with H0 = 100 h km/s/Mpc. Another choice is to use
the mean matter density ⇢m(z) = ⇢c(z)⌦m(z), where
⌦m(z) = ⌦m(1 + z)3/

⇥
⌦m(1 + z)3 + ⌦⇤

⇤
, which is used

with � = 200.
As noted above, DK14 use the mean matter density

⇢m(z) to define the radius R200 = R200m used in the
fitting formula given by Equation (1). However, R13
measures R200 = R200c for their sample of clusters using
the critical density as reference, so we need to convert
their measure to that of DK14. To do so, we note that a
given mean density ⇢̄ may be written in two ways:

⇢̄ = �c⇢c(z) = �m⇢m(z). (8)

If we specify that ⇢ = ⇢NFW, then in the outskirts of the
cluster (i.e., including near R200), we have:

⇢̄(R�) /
1

R3
�

. (9)
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▹    	

Density  Jumps  in  Projection	
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▹    	

Results	
▹  Photometric  Selection  (8  clusters  with  ΔIC  >  5)	
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▹    	
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Results	
▹  Photometry  +  Spectroscopy  (16  clusters  with  ΔIC  >  5)	
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▹    	

Prospects	
▹  Detecting  the  density  jump  is  
challenging,  but  potentially  
possible  in  massive  clusters	

	
▹  Having  a  clean  cluster  member  
selection  out  to  large  radii  is  key    	

	
▹  Future  work  will  require  dense  
spectroscopy  or  secure  
photometric  redshifts  in  
outskirts	

	

▹  Weak  lensing  can  probe  dark  
ma_er  jump;  comparison  to  the  
galaxy  feature  will  yield  insights  
into  the  dynamics  of  dark  ma_er  
vs  galaxies	
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Part  I.	
Baryons  in  the  Outskirts  of  Galaxy  Clusters  	
▹  Introduction	
▹  A  Simple  Physical  Model  for  the  Gas  
Distribution  in  Galaxy  Clusters	

▹  Density  Jumps  Near  the  Virial  Radius  of  Galaxy  
Clusters	

Part  II.	
Baryons  on  Large  Scales	
▹  Introduction	
▹  Quantifying  the  Color-‐‑Dependent  Stochasticity  
of  Large-‐‑Scale  Structure	

Part  III.	
Galaxy  Cluster  Science  in  the  Context  of  
Next-‐‑Generation  Galaxy  Surveys	
▹  The  Dark  Energy  Spectroscopic  Instrument  
(DESI)	

▹  The  DECam  Legacy  Survey  (DECaLS)	
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▹    	

Introduction	
▹ Galaxy  redshift  surveys  use  observed  galaxy  distribution  
to  probe  large-‐‑scale  structure  (LSS)	

▹ Galaxies  as  tracers  of  underlying  ma_er  distribution:  need  
to  understand  bias  in  order  to  make  cosmological  
inferences	

▹ Galaxy  bias  well-‐‑studied  on  small  scales  (<  40  h-‐‑1  Mpc;  e.g.,  
Swanson  et  al.  2008,  Zehavi  et  al.  2011)	

▹ We  will  examine  the  bias  to  test  whether  galaxies  trace  
LSS  on  larger  scales  	
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▹    	

Introduction	
▹  Basic  question:  do  massive  red  and  blue  galaxies  at  z~0.6  trace  the  
same  large-‐‑scale  structure  on  intermediate  scales  (20<R<100  Mpc/h)?	

▹  Approach:  with  	
	
	
▹  Correlation  function:	
	

	
▹  But  what  if  bias  is  stochastic?  Define  a  random  bias  field  (Dekel  &  
Lahav  1999)  for  g=b,r:	

	
	
▹  Key  to  discerning  the  presence  of  stochasticity:  measure  r!	
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ABSTRACT
We address the question of whether massive red and blue galaxies trace the same large-

scale structure at z ⇠ 0.6 using the CMASS sample of galaxies from Data Release 12

of the Sloan Digital Sky Survey III. After splitting the catalog into subsamples of red

and blue galaxies using a simple colour cut, we measure the clustering of both subsam-

ples and construct the correlation coefficient, r, using two statistics. The correlation

coefficient quantifies the stochasticity between the two subsamples, which we examine

over intermediate scales (20 . R . 100 h�1Mpc). We find that on these intermediate

scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95
taking into account both statistics and r > 0.974 using the favored statistic.

1 INTRODUCTION

Large-scale galaxy redshift surveys such as the Sloan Digi-
tal Sky Survey (SDSS-III DR12; Alam et al. 2015) use the
distribution of galaxies in the universe to constrain cosmo-
logical parameters in a manner complementary to other cos-
mological probes, including measurements of the cosmic mi-
crowave background (e.g., Ade et al. 2015) and supernovae
(e.g., Suzuki et al. 2012). Within the scope of galaxy redshift
surveys, major projects like SDSS-III’s Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013) as well
as future experiments like the Dark Energy Spectroscopic
Instrument (DESI) (Levi et al. 2013) target specific types
of galaxies: luminous red galaxies (LRGs), and LRGs and
emission line galaxies (ELGs), respectively. Accordingly, a
key source of systematic uncertainty in these surveys is the
knowledge of the extent to which the subset of galaxies ob-
served probes the large-scale structure of the universe.

Local bias argues for a minimal level of stochasticity
on large scales (Coles 1993; Scherrer & Weinberg 1998) and
investigations of halo clustering suggest that halos of differ-
ent masses do roughly trace the same large-scale structure
(e.g, Seljak & Warren 2004; Hamaus et al. 2010). Accord-
ingly, we may expect galaxies to be roughly non-stochastic
(e.g., Tegmark & Bromley 1999). An informative test of
these predictions can be obtained by measuring whether red
and blue galaxies trace the same large-scale structure. The
mathematical framework of this question can be developed
straightforwardly using the concept of a fractional overden-
sity field,

�(x) =
⇢(x)
⇢̄

� 1. (1)

In the simplest scenario, we can relate the distribution of
red and blue galaxies to this underlying matter distribution

via linear, deterministic bias parameters as:

�b(x) = bb�(x), �r(x) = br�(x), (2)

from which it is possible to compute the correlation function
as ⇠(R) = h�(x)�(x+R)i. Combined with Equation (2), this
yields the relations:

⇠bb(R) = b

2

b⇠(R), (3)

⇠rr(R) = b

2

r⇠(R), (4)
⇠br(R) = bbbr⇠(R). (5)

Taking the square root of the ratios of the autocorrelations
yields estimates of the relative bias b

rel

between red and blue
galaxies (e.g., Croton et al. 2007; Coil et al. 2008; Guo et
al. 2013; Skibba et al. 2014). Constructing the correlation
coefficient, r⇠, we find:

r⇠ ⌘ ⇠brp
⇠bb⇠rr

= 1. (6)

However, the formalism of Equation (2) has several
obvious failures, one of which is that it permits values of
�b, �r < �1 if bb, br > 1, and so must be superseded by a
more realistic model. To this end, we follow Dekel & Lahav
(1999) in defining, for g = b, r,

✏g(x) ⌘ �g(x)� bg�(x), (7)

a random bias field that introduces stochasticity into the
relations between the two galaxy samples. In this case, if we
calculate the correlation coefficient, we see that r⇠ 6= 1.

The key to discerning the presence of stochasticity, then,
is the measurement of the correlation coefficient. We use
pair counting to calculate both the traditional correlation
function statistics as well as the more recent ! statistic
of Xu et al. (2010) using the BOSS CMASS sample of
galaxies from SDSS-III DR12; we then calculate a corre-
lation coefficient for each statistic. Our focus is on inter-
mediate scales, roughly 20 . r . 100 h

�1Mpc, which can

c� 2015 The Authors

MNRAS 000, 1–9 (2015) Preprint 6 October 2015 Compiled using MNRAS LATEX style file v3.0

Quantifying the Colour-Dependent Stochasticity of

Large-Scale Structure

Anna Patej1 and Daniel Eisenstein2
1Department of Physics, Harvard University, 17 Oxford St., Cambridge, MA 02138, USA
2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

6 October 2015

ABSTRACT
We address the question of whether massive red and blue galaxies trace the same large-

scale structure at z ⇠ 0.6 using the CMASS sample of galaxies from Data Release 12

of the Sloan Digital Sky Survey III. After splitting the catalog into subsamples of red

and blue galaxies using a simple colour cut, we measure the clustering of both subsam-

ples and construct the correlation coefficient, r, using two statistics. The correlation

coefficient quantifies the stochasticity between the two subsamples, which we examine

over intermediate scales (20 . R . 100 h�1Mpc). We find that on these intermediate

scales, the correlation coefficient is consistent with 1; in particular, we find r > 0.95
taking into account both statistics and r > 0.974 using the favored statistic.

1 INTRODUCTION

Large-scale galaxy redshift surveys such as the Sloan Digi-
tal Sky Survey (SDSS-III DR12; Alam et al. 2015) use the
distribution of galaxies in the universe to constrain cosmo-
logical parameters in a manner complementary to other cos-
mological probes, including measurements of the cosmic mi-
crowave background (e.g., Ade et al. 2015) and supernovae
(e.g., Suzuki et al. 2012). Within the scope of galaxy redshift
surveys, major projects like SDSS-III’s Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013) as well
as future experiments like the Dark Energy Spectroscopic
Instrument (DESI) (Levi et al. 2013) target specific types
of galaxies: luminous red galaxies (LRGs), and LRGs and
emission line galaxies (ELGs), respectively. Accordingly, a
key source of systematic uncertainty in these surveys is the
knowledge of the extent to which the subset of galaxies ob-
served probes the large-scale structure of the universe.

Local bias argues for a minimal level of stochasticity
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ent masses do roughly trace the same large-scale structure
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= 1. (6)
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as future experiments like the Dark Energy Spectroscopic
Instrument (DESI) (Levi et al. 2013) target specific types
of galaxies: luminous red galaxies (LRGs), and LRGs and
emission line galaxies (ELGs), respectively. Accordingly, a
key source of systematic uncertainty in these surveys is the
knowledge of the extent to which the subset of galaxies ob-
served probes the large-scale structure of the universe.

Local bias argues for a minimal level of stochasticity
on large scales (Coles 1993; Scherrer & Weinberg 1998) and
investigations of halo clustering suggest that halos of differ-
ent masses do roughly trace the same large-scale structure
(e.g, Seljak & Warren 2004; Hamaus et al. 2010). Accord-
ingly, we may expect galaxies to be roughly non-stochastic
(e.g., Tegmark & Bromley 1999). An informative test of
these predictions can be obtained by measuring whether red
and blue galaxies trace the same large-scale structure. The
mathematical framework of this question can be developed
straightforwardly using the concept of a fractional overden-
sity field,

�(x) =
⇢(x)
⇢̄

� 1. (1)

In the simplest scenario, we can relate the distribution of
red and blue galaxies to this underlying matter distribution

via linear, deterministic bias parameters as:

�b(x) = bb�(x), �r(x) = br�(x), (2)

from which it is possible to compute the correlation function
as ⇠(R) = h�(x)�(x+R)i. Combined with Equation (2), this
yields the relations:

⇠bb(R) = b

2

b⇠(R), (3)

⇠rr(R) = b

2

r⇠(R), (4)
⇠br(R) = bbbr⇠(R). (5)

Taking the square root of the ratios of the autocorrelations
yields estimates of the relative bias b

rel

between red and blue
galaxies (e.g., Croton et al. 2007; Coil et al. 2008; Guo et
al. 2013; Skibba et al. 2014). Constructing the correlation
coefficient, r⇠, we find:

r⇠ ⌘ ⇠brp
⇠bb⇠rr

= 1. (6)

However, the formalism of Equation (2) has several
obvious failures, one of which is that it permits values of
�b, �r < �1 if bb, br > 1, and so must be superseded by a
more realistic model. To this end, we follow Dekel & Lahav
(1999) in defining, for g = b, r,

✏g(x) ⌘ �g(x)� bg�(x), (7)

a random bias field that introduces stochasticity into the
relations between the two galaxy samples. In this case, if we
calculate the correlation coefficient, we see that r⇠ 6= 1.

The key to discerning the presence of stochasticity, then,
is the measurement of the correlation coefficient. We use
pair counting to calculate both the traditional correlation
function statistics as well as the more recent ! statistic
of Xu et al. (2010) using the BOSS CMASS sample of
galaxies from SDSS-III DR12; we then calculate a corre-
lation coefficient for each statistic. Our focus is on inter-
mediate scales, roughly 20 . r . 100 h
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2 A. Patej & D. Eisenstein

be compared to the results of previous analyses at smaller
scales using similar statistical methods (e.g., Zehavi et al.
2005). Our approach also provides an alternative to analy-
ses of colour-dependent clustering using the complementary
counts-in-cells method (e.g., Wild et al. 2005; Swanson et
al. 2008). Throughout we assume a flat ⇤CDM cosmology
with ⌦m = 0.274, which is consistent with Anderson et al.
(2012).

2 DATA

The SDSS-III DR12 contains spectra of over 1.3 million
galaxies and ugriz imaging of 14555 sq. degrees of sky ob-
tained using a 2.5 m telescope at Apache Point Observatory
(York et al. 2000; Gunn et al. 2006; Alam et al. 2015). A
series of publications outlines the technical details of SDSS
instrumentation (Fukugita et al. 1996; Smith et al. 2002;
Doi et al. 2010; Smee et al. 2013) and the data processing
pipelines (Lupton et al. 2001; Pier et al. 2003; Padmanab-
han et al. 2008; Bolton et al. 2012; Weaver et al. 2015).
We perform our analysis on the CMASS sample of BOSS
galaxies, which is defined via colour and magnitude cuts
as in Eisenstein et al. (2011), Dawson et al. (2013), and
Reid et al. (2015). We further narrow our attention to the
redshift range 0.55 < z < 0.65. To divide the sample into
red and blue galaxies, we use the criterion of Masters et al.
(2011), which selects red galaxies using the simple colour
cut g � i > 2.35. These cuts yield 232,759 red galaxies and
61,301 blue galaxies. In addition to the data, we select two
subsamples of random galaxies to correspond to the red and
blue galaxies such that each set has roughly 50 times the
number of galaxies as the data subsamples.

Since this colour cut yields roughly four times more red
galaxies than blue, we use the redshift distribution of galax-
ies, shown in Fig. 1, to generate weights w

colour

for the blue
galaxies that match their distribution to the red galaxies,
which we will use in addition to the standard data weights.
The final weighting that we use is then:

w

total

= w

colour

w

sys

(wzf + wcp � 1), (8)

where w

colour

= 1 for red galaxies and w

colour

> 1 for blue
galaxies, w

sys

is a systematic weight that accounts for ob-
serving conditions, and wzf and wcp account for redshift
failures and close pairs, respectively (c.f. Anderson et al.
2012; Ross et al. 2014). We additionally match the redshift
distribution of the randoms to that of the data.

It is worth noting that the simple colour cut of Masters
et al. (2011) is not the only choice for dividing the galaxy
sample into red and blue subsets; other works have employed
different cuts, such as the luminosity dependent colour cut of
Zehavi et al. (2011) and Guo et al. (2013). However, for the
purposes of this work, the exact choice of the colour cut is
not significant, since we make the randoms trace the galaxy
redshift distributions. In essence, all we require is a simple
criterion by which to divide the sample into two categories,
which we compare via two statistics.

3 PROCEDURE

3.1 Statistics

One of the standard methods of calculating the galaxy cor-
relation function is the Landy-Szalay estimator (Landy &
Szalay 1993):

⇠(r) =
DD(r)� 2DR(r) +RR(r)

RR(r)
, (9)

where the terms DD, DR, and RR denote normalised data-
data, data-random, and random-random pair counts. In an-
alyzing red and blue galaxy clustering, we may thus define
the auto-correlations of blue galaxies and red galaxies as:

⇠bb(r) =
DbDb(r)� 2DbRb(r) +RbRb(r)

RbRb(r)
, (10)

⇠rr(r) =
DrDr(r)� 2DrRr(r) +RrRr(r)

RrRr(r)
, (11)

and the cross-correlation (blue-red) as:

⇠br(r) =
DbDr(r)�DbRr(r)�DrRb(r) +RbRr(r)

RbRr(r)
. (12)

From these functions we can then compute the cross-
correlation coefficient,

r⇠ =
⇠brp
⇠rr⇠bb

, (13)

which provides a measure of the stochasticity.
However, while correlation functions provide a useful

measurement of the stochasticity parameter, it is possible
to extend this analysis by using a statistic that is both more
computationally efficient and less susceptible to poorly con-
strained or measured fluctuations from both small and large
scales. Such a statistic is provided by Xu et al. (2010), who
define an !` statistic whose monopole term is:

!

0

(rs) = 4⇡

Z
W (r, rs)⇠(r)r

2

dr, (14)

where W is a smooth, compensated filter, chosen by Xu et
al. (2010) (see also Padmanabhan et al. 2007) to be:

W (x) = (2x)2(1� x)2
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� x

◆
1
r

3

s
, (15)

where
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r

rs

◆
3

. (16)

The smoothness of the filter function W means that !

0

is
largely insensitive to small-scale power, while the fact that
W integrates to zero removes the sensitivity to large-scale
power and reduces the risk of including large-scale system-
atic errors.

Now, following Xu et al. (2010), if we define a simple
pair-count estimator of the correlation function as:

⇠(r) =
DD(r)
RR(r)

� 1, (17)

then by substituting into Equation (14), we obtain:

!

0

(rs) = 4⇡

Z
W (r, rs)

DD(r)
RR(r)

r

2

dr, (18)

with the integral of the �1 term in Equation (17) vanishing
since we have selected a compensated filter. The DD term
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hr⇠i = 0.978± 0.014 (14)
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▹ Varying  the  minimum  fi_ing  radius	
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▹    	

Measuring  r	
▹ Due  to  apparent  large-‐‑
scale  systematics,  useful  to  
consider  a  statistic  that  is  
more  immune  	

▹ Xu,  et  al.  (2010)  statistic:	

	
▹ ω  can  be  expressed  as  a  
simple  count  over  pairs  
(Padmanabhan  et  al.  2007)	
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▹ Varying  the  minimum  fi_ing  radius	



▹    	

Prospects	
▹ At  the  sensitivity  of  BOSS,  we  find  that  red  and  blue  
galaxies  do  trace  the  same  large-‐‑scale  structure	
▸  We  find  low  levels  of  stochasticity  between  massive  red  and  blue  
galaxies  at  z~0.6,  with  2σ  bounds  of  r  >  0.95  using  correlation  
functions  and  r  >  0.974  using  the  ω  statistic	

	

▹  The  ω  statistic  is  a  promising  tool  for  analyzing  the  
stochasticity;  will  likely  benefit  future  investigations  at  
larger  scales	
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Part  I.	
Baryons  in  the  Outskirts  of  Galaxy  Clusters  	
▹  Introduction	
▹  A  Simple  Physical  Model  for  the  Gas  
Distribution  in  Galaxy  Clusters	

▹  Density  Jumps  Near  the  Virial  Radius  of  Galaxy  
Clusters	

Part  II.	
Baryons  on  Large  Scales	
▹  Introduction	
▹  Quantifying  the  Color-‐‑Dependent  Stochasticity  
of  Large-‐‑Scale  Structure	

Part  III.	
Galaxy  Cluster  Science  in  the  Context  of  
Next-‐‑Generation  Galaxy  Surveys	
▹  The  Dark  Energy  Spectroscopic  Instrument  
(DESI)	

▹  The  DECam  Legacy  Survey  (DECaLS)	
	

Patej  &  Loeb,  2015a,  ApJL,  798,  
L20	
Patej  &  Loeb,  2015b,  arXiv:
1509.07506	
	
	
	
Patej  &  Eisenstein,  arXiv:
1510.01737	

Outline	



▹    	

DESI	
▹  The  Dark  Energy  
Spectroscopic  Instrument:  
next-‐‑generation  galaxy  
redshift  survey	

	
▹  Successor  to  SDSS-‐‑III/BOSS  
and  SDSS-‐‑IV/eBOSS  and  
headquartered  here  at  LBNL	

	

▹  First  light  in  2019	
	

▹ Will  measure  redshifts  for  21  
M  high  redshift  galaxies,  2  M  
quasars,  10  M  bright  galaxies	

	

▹  Requires  imaging  surveys  for  
target  selection:  DECaLS,  
MzLS,  BASS	
34	

Image  courtesy  of  A.  Dey	



▹    	

DECaLS	
▹  The  DECam  Legacy  Survey:  necessary  imaging  survey  for  
DESI  targeting  and  public  legacy  survey	

▹  High-‐‑quality  Blanco/DECam  grz  imaging  of  6700  sq  deg  of  the  
SDSS  footprint  at  -‐‑10  <  Dec  <  +30	

▹  Data  Release  1  already  available  at  legacysurvey.org	

35	 Image  courtesy  of  D.  Schlegel	



▹    	

DECaLS	
▹  Scheduling  &  Observing  
Strategy:	
▸  Requirements:	
▸  g+r  back-‐‑to-‐‑back  in  moon-‐‑down  time  	
▸  z  in  moon-‐‑up  time  and  twilight	
▸  Passes  selected  depending  on  

conditions	
▸  Exposure  times  scaled  to  conditions	

▸  Priorities:  	
▸  Avoid  moon  &  planets	
▸  Avoid  large  slews	
▸  Maximize  immediate  scientific  use	
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▹    	

Galaxy  Clusters  and  DESI	
▹  DESI  will  enable  a  wealth  of  
cluster-‐‑related  projects	
▸  Spectra  of  cluster  members  out  
to  z~1	

▸  Cluster  cosmology:  N(m,z)	
▸  DESI:  redshifts	
▸  ACT,  Planck:  cluster  detection,  

SZ  masses	
▸  eROSITA:  low-‐‑z  cluster  

detection,  X-‐‑ray  masses	
▸  Imaging  Surveys:  lensing  masses	

▸  Use  clusters  as  tracers  of  mass  
distribution	
▸  Measure  bias  parameter  of  

clusters  and  derive  mass	
▸  Measure  BAO	
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Ellipsoidal collapse and an improved model 9

Figure 5. The large scale bias factor b(m) as a function of halo
mass. Dotted curves show a fit to this relation measured in numer-
ical simulations by Jing (1998), though his Figure 3 shows that
the bias factor for massive haloes in his simulations is slightly
smaller than the one given by his fitting function. Dashed curves
show the spherical collapse prediction of Mo & White (1996), and
solid curves show the elliposidal collapse prediction of this paper.
At the high mass end, our solid curves and the simulation results
differ from Jing’s fitting function (dotted) in the same qualitative
sense.

relation was related to the crossing of two barriers (also see
Sheth & Tormen 1999). Essentially, the large scale bias rela-
tion is associated with random walks which travel far from
the origin before intersecting the barrier. To insure that this
happens, one must consider random walks which intersect
the barrier when the barrier height is very high. We have
simulated random walks, and recorded the first crossings of
the barrier given in equation (7) in the high-barrier limit.
We have then used the relation given by Mo & White to
compute the associated prediction for the large scale bias
relation. To a very good approximation, this relation is

bEul(ν) = 1 + bLag(ν),

where ν ≡ δsc(z)/σ(m,z), and

bLag(ν) =
1√

aδsc(z)

[√
a (aν2) +

√
a b (aν2)1−c

− (aν2)c

(aν2)c + b (1 − c)(1 − c/2)

]

, (8)

where a, b and c are the same parameters that describe the
barrier shape (equation 7). The solid curve shows the pre-
dicted large scale Eulerian bias relation (with a = 0.707,
b = 0.5 and c = 0.6); it produces an upturn at the low mass
end that is similar to the one seen in Jing’s simulations. (In
practice, the mass functions in the initial scale free simula-
tions differ slightly from the GIF mass function. So, strictly
speaking, the bias relation should be computed using the
values of a, b and c associated with the actual mass function

Figure 6. The large scale bias factor b(m) as a function of halo
mass in the GIF simulations. Dashed curves show the spherical
collapse prediction of Mo & White (1996), dotted curves show
the peak background split formula of Sheth & Tormen (1999),
and solid curves show the ellipsoidal collapse prediction of this
paper.

in the scale free simulations. Since this difference is small,
we have not pursued this further.)

We end this section with a brief comparison of the ellip-
soidal collapse bias relation with that in simulations which
started from realistic initial power spectra. Sheth & Tormen
(1999) showed that in the GIF simulations of SCDM, ΛCDM
and OCDM models, the bias relation for haloes which are
defined at zform and are observed at zobs = zform could be
rescaled to produce a plot that was independent of zform

(see their Fig. 4). The symbols in Fig. 6 show this rescaled
bias relation for zform = 0, 1, 2, and 4 (filled triangles, open
squares, filled circles, and open circles, respectively). The
dashed curves show the standard spherical collapse predic-
tion, the dotted curves show the bias relation associated with
the peak background split, and the solid curves show the el-
lipsoidal collapse prediction. These GIF simulations span a
smaller range in δsc/σ than Jing’s n = −0.5 scale free runs.
Over this smaller range, the peak background split formula
and the moving barrier prediction are both in good agree-
ment with the simulations.

c© 0000 RAS, MNRAS 000, 000–000

Above:  Sheth,  Mo,  &  Tormen  (2001)  	



▹    	

Galaxy  Clusters  and  DESI	
▹ Clusters  cont.	
▸  Photometry
+Spectroscopy	
▸  Can  detect  clusters/

groups  to  lower  mass  
ranges  than  SZ,  X-‐‑rays	

▸  Some  methods  already  
implemented  for  SDSS,  
DES,  etc	
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Above:  Bleem  et  al.  (2015)	



▹    	

Summary	

39	

▹  Galaxy  Cluster  Outskirts	
▸  Density  jumps  in  the  gas,  dark  ma_er,  and  galaxy  profiles  are  predicted  by  

long-‐‑standing  analytical  models  of  structure  formation  and  recent  
simulations	

▸  Observing  these  density  jumps  will  provide  compelling  evidence  in  favor  of  
our  current  understanding  of  the  processes  of  infall  and  accretion,  and  test  
the  nature  of  dark  ma_er  and  the  dynamics  of  galaxies  in  cluster  outskirts	

▸  A  feature  consistent  with  the  density  jump  should  be  detectable  in  massive  
clusters  	

▹  Large  Scales	
▸  On  large  scales,  galaxies  of  different  types  are  expected  to  roughly  trace  the  

same  large-‐‑scale  structure	
▸  We  tested  this  prediction  using  massive  red  and  blue  galaxies  from  BOSS/

CMASS,  finding  that  these  types  of  galaxies  do  trace  the  same  LSS,  with  low  
stochasticity  (r  >  0.95)	

▹  Many  interesting  possibilities  with  galaxy  clusters  will  be  possible  in  
the  near  future  using  DESI!	


